27 research outputs found

    A proposal for a global task planning architecture using the RoboEarth cloud based framework

    Get PDF
    As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans

    Integrating planning and execution for ROS enabled service robots using hierarchical action representations

    Get PDF
    Abstract-The aim of the RoboEarth project is to develop a globally accessible database, that enables service robots to share reusable information relevant to the execution of their daily tasks. Examples of this information are the hierarchical task descriptions, or action recipes, that represent typical household tasks as symbolic action sequences. By annotating these static action representations with hierarchical planner predicates, they can be interpreted by the Hierarchical Task Network planner SHOP2 to compose more flexible, optimized robot plans, based on the actual state of the environment and the available capabilities of the robot. To subsequently execute the composed plans in a typical household environment, the CRAM executive toolbox is adopted, allowing a tight integration between plan execution and run-time knowledge inference. This paper presents the integration of these two components into one cohesive planning and execution framework, tailored for the safe execution of abstract tasks in a challenging household environment. The resulting framework is implemented on the AMIGO service robot and a basic experiment is conducted to demonstrate the frameworks integral functionality

    Service Component Architectures in Robotics: The SCA-Orocos Integration

    No full text

    Data-based optimal control

    Get PDF
    This paper deals with data-based optimal control. The control algorithm consists of two complementary subsystems, namely a data-based observer and an optimal feedback controller based on the system's Markov parameters. These parameters can be identified on-line using only input/output data. The effectiveness of the resulting controller is evaluated with a regulation and a tracking control experiment, performed on a direct-drive robot of spatial kinematics

    Data-based optimal control

    No full text
    This paper deals with data-based optimal control. The control algorithm consists of two complementary subsystems, namely a data-based observer and an optimal feedback controller based on the system's Markov parameters. These parameters can be identified on-line using only input/output data. The effectiveness of the resulting controller is evaluated with a regulation and a tracking control experiment, performed on a direct-drive robot of spatial kinematics

    Heterogeneous multi-agent resource allocation through multi-bidding with applications to precision agriculture⁎

    No full text
    In this paper we consider the problem of allocating multiple resources to a number of clients by a group of heterogeneous agents over time such that the clients can produce products while maximizing a profit function. We propose an approximate optimization framework in which every client provides multiple bids from which the agents choose such that an allocation is feasible and that the profit function is maximized over time. The proposed framework exploits decomposition techniques that can be used for large-scale multi-agent resource allocation problems in which the cost objective is additive, the dynamics of product generation is non-linear and the agents have different capabilities. Interestingly, the decomposition can be solved in a distributed fashion, enabling application to large-scale problems. We apply this decomposition to the management of resources and agents in precision agriculture as an inspirational and important application domain of the obtained results. We show that our framework can be used in order to schedule the time, location and quantity of resources that every agent must provide whilst optimizing the profit of the entire farm over the growing season

    A proposal for a global task planning architecture using the RoboEarth cloud based framework

    No full text
    As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans
    corecore